43 research outputs found

    Static and Dynamic Anomalies in a Repulsive Spherical Ramp Liquid: Theory and Simulation

    Full text link
    We compare theoretical and simulation results for static and dynamic properties for a model of particles interacting via a spherically symmetric repulsive ramp potential. The model displays anomalies similar to those found in liquid water, namely, expansion upon cooling and an increase of diffusivity upon compression. In particular, we calculate the phase diagram from the simulation and successfully compare it with the phase diagram obtained using the Rogers-Young (RY) closure for the Ornstein-Zernike equation. Both the theoretical and the numerical calculations confirm the presence of a line of isobaric density maxima, and lines of compressibility minima and maxima. Indirect evidence of a liquid-liquid critical point is found. Dynamic properties also show anomalies. Along constant temperature paths, as the density increases, the dynamics alternates several times between slowing down and speeding up, and we associate this behavior with the progressive structuring and de-structuring of the liquid. Finally we confirm that mode coupling theory successfully predicts the non-monotonic behavior of dynamics and the presence of multiple glass phases, providing strong evidence that structure (the only input of mode coupling theory) controls dynamics.Comment: Static and Dynamic Anomalies in a Repulsive Spherical Ramp Liquid: Theory and Simulatio

    The Debye-Waller factor of liquid silica: Theory and simulation

    Full text link
    We show that the prediction of mode-coupling theory for a model of a network-forming strong glass-former correctly describes the wave-vector dependence of the Debye-Waller factor. To obtain a good description it is important to take into account the triplet correlation function c_3, which we evaluate from a computer simulation. Our results support the possibility that this theory is able to accurately describe the non-ergodicity parameters of simple as well as of network-forming liquids.Comment: 5 pages of Latex, 3 figure

    Dynamics of supercooled liquids: density fluctuations and Mode Coupling Theory

    Full text link
    We write equations of motion for density variables that are equivalent to Newtons equations. We then propose a set of trial equations parameterised by two unknown functions to describe the exact equations. These are chosen to best fit the exact Newtonian equations. Following established ideas, we choose to separate these trial functions into a set representing integrable motions of density waves, and a set containing all effects of non-integrability. It transpires that the static structure factor is fixed by this minimum condition to be the solution of the Yvon-Born-Green (YBG) equation. The residual interactions between density waves are explicitly isolated in their Newtonian representation and expanded by choosing the dominant objects in the phase space of the system, that can be represented by a dissipative term with memory and a random noise. This provides a mapping between deterministic and stochastic dynamics. Imposing the Fluctuation-Dissipation Theorem (FDT) allows us to calculate the memory kernel. We write exactly the expression for it, following two different routes, i.e. using explicitly Newtons equations, or instead, their implicit form, that must be projected onto density pairs, as in the development of the well-established Mode Coupling Theory (MCT). We compare these two ways of proceeding, showing the necessity to enforce a new equation of constraint for the two schemes to be consistent. Thus, while in the first `Newtonian' representation a simple gaussian approximation for the random process leads easily to the Mean Spherical Approximation (MSA) for the statics and to MCT for the dynamics of the system, in the second case higher levels of approximation are required to have a fully consistent theory

    Molecular mode-coupling theory for supercooled liquids: Application to water

    Full text link
    We present mode-coupling equations for the description of the slow dynamics observed in supercooled molecular liquids close to the glass transition. The mode-coupling theory (MCT) originally formulated to study the slow relaxation in simple atomic liquids, and then extended to the analysis of liquids composed by linear molecules, is here generalized to systems of arbitrarily shaped, rigid molecules. We compare the predictions of the theory for the qq-vector dependence of the molecular nonergodicity parameters, calculated by solving numerically the molecular MCT equations in two different approximation schemes, with ``exact'' results calculated from a molecular dynamics simulation of supercooled water. The agreement between theory and simulation data supports the view that MCT succeeds in describing the dynamics of supercooled molecular liquids, even for network forming ones.Comment: 22 pages 4 figures Late

    Supercooled Water and the Kinetic Glass Transition II: Collective Dynamics

    Full text link
    In this article we study in detail the Q-vector dependence of the collective dynamics in simulated deeply supercooled SPC/E water. The evolution of the system has been followed for 250 ns at low T, allowing a clear identification of a two step relaxation process. We present evidence in favor of the use of the mode coupling theory for supercooled liquid as framework for the description of the slow alpha-relaxation dynamics in SPC/E water, notwithstanding the fact that the cage formation in this system is controlled by the formation of an open network of hydrogen bonds as opposed to packing constraints, as in the case of simple liquids.Comment: rev-tex + 9 figure

    Inherent Structures, Configurational Entropy and Slow Glassy Dynamics

    Full text link
    We give a short introduction to the inherent structure approach, with particular emphasis on the Stillinger and Weber decomposition, of glassy systems. We present some of the results obtained in the framework of spin-glass models and Lennard-Jones glasses. We discuss how to generalize the standard Stillinger and Weber approach by including the entropy of inherent structures. Finally we discuss why this approach is probably insufficient to describe the behavior of some kinetically constrained models.Comment: 16 pages, 8 figures, Contribution to the ESF SPHINX meeting `Glassy behaviour of kinetically constrained models' (Barcelona, March 22-25, 2001

    Test of mode coupling theory for a supercooled liquid of diatomic molecules.I. Translational degrees of freedom

    Full text link
    A molecular dynamics simulation is performed for a supercooled liquid of rigid diatomic molecules. The time-dependent self and collective density correlators of the molecular centers of mass are determined and compared with the predictions of the ideal mode coupling theory (MCT) for simple liquids. This is done in real as well as in momentum space. One of the main results is the existence of a unique transition temperature T_c, where the dynamics crosses over from an ergodic to a quasi-nonergodic behavior. The value for T_c agrees with that found earlier for the orientational dynamics within the error bars. In the beta- regime of MCT the factorization of space- and time dependence is satisfactorily fulfilled for both types of correlations. The first scaling law of ideal MCT holds in the von Schweidler regime, only, since the validity of the critical law can not be confirmed, due to a strong interference with the microscopic dynamics. In this first scaling regime a consistent description within ideal MCT emerges only, if the next order correction to the asymptotic law is taken into account. This correction is almost negligible for q=q_max, the position of the main peak in the static structure factor S(q), but becomes important for q=q_min, the position of its first minimum. The second scaling law, i.e. the time-temperature superposition principle, holds reasonably well for the self and collective density correlators and different values for q. The alpha-relaxation times tau_q^(s) and tau_q follow a power law in T-T_c over 2 -- 3 decades. The corresponding exponent gamma is weakly q-dependent and is around 2.55. This value is in agreement with the one predicted by MCT from the value of the von Schweidler exponent but at variance with the corresponding exponent gammaComment: 14 pages of RevTex, 19 figure

    Fast relaxation in a fragile liquid under pressure

    Full text link
    The incoherent dynamic structure factor of ortho-terphenyl has been measured by neutron time-of-flight and backscattering technique in the pressure range from 0.1 MPa to 240 MPa for temperatures between 301 K and 335 K. Tagged-particle correlations in the compressed liquid decay in two steps. The alpha-relaxation lineshape is independent of pressure, and the relaxation time proportional to viscosity. A kink in the amplitude f_Q(P) reveals the onset of beta relaxation. The beta-relaxation regime can be described by the mode-coupling scaling function; amplitudes and time scales allow a consistent determination of the critical pressure P_c(T). alpha and beta relaxation depend in the same way on the thermodynamic state; close to the mode-coupling cross-over, this dependence can be parametrised by an effective coupling Gamma ~ n*T**{-1/4}.Comment: 4 Pages of RevTeX, 4 figures (submitted to Physical Review Letters

    Model for Glass Transition in a Binary fluid from a Mode Coupling approach

    Get PDF
    We consider the Mode Coupling Theory (MCT) of Glass transition for a Binary fluid. The Equations of Nonlinear Fluctuating Hydrodynamics are obtained with a proper choice of the slow variables corresponding to the conservation laws. The resulting model equations are solved in the long time limit to locate the dynamic transition. The transition point from our model is considerably higher than predicted in existing MCT models for binary systems. This is in agreement with what is seen in Computer Simulation of binary fluids. fluids.Comment: 9 Pages, 3 Figure

    Propylene Carbonate Reexamined: Mode-Coupling β\beta Scaling without Factorisation ?

    Full text link
    The dynamic susceptibility of propylene carbonate in the moderately viscous regime above TcT_{\rm c} is reinvestigated by incoherent neutron and depolarised light scattering, and compared to dielectric loss and solvation response. Depending on the strength of α\alpha relaxation, a more or less extended β\beta scaling regime is found. Mode-coupling fits yield consistently λ=0.72\lambda=0.72 and Tc=182T_{\rm c}=182 K, although different positions of the susceptibility minimum indicate that not all observables have reached the universal asymptotics
    corecore